3.6.21 \(\int x^2 (a+b \log (c (d+\frac {e}{x^{2/3}})^n))^2 \, dx\) [521]

3.6.21.1 Optimal result
3.6.21.2 Mathematica [C] (verified)
3.6.21.3 Rubi [A] (verified)
3.6.21.4 Maple [F]
3.6.21.5 Fricas [F]
3.6.21.6 Sympy [F(-1)]
3.6.21.7 Maxima [F(-2)]
3.6.21.8 Giac [F]
3.6.21.9 Mupad [F(-1)]

3.6.21.1 Optimal result

Integrand size = 24, antiderivative size = 490 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=-\frac {4 a b e^4 n \sqrt [3]{x}}{3 d^4}+\frac {568 b^2 e^4 n^2 \sqrt [3]{x}}{315 d^4}-\frac {32 b^2 e^3 n^2 x}{105 d^3}+\frac {8 b^2 e^2 n^2 x^{5/3}}{105 d^2}-\frac {1408 b^2 e^{9/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )}{315 d^{9/2}}-\frac {4 i b^2 e^{9/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )^2}{3 d^{9/2}}+\frac {8 b^2 e^{9/2} n^2 \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \log \left (2-\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{3 d^{9/2}}-\frac {4 b^2 e^4 n \sqrt [3]{x} \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{3 d^4}+\frac {4 b e^3 n x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{9 d^3}-\frac {4 b e^2 n x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{15 d^2}+\frac {4 b e n x^{7/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{21 d}+\frac {4 b e^{9/2} n \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{3 d^{9/2}}+\frac {1}{3} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2-\frac {4 i b^2 e^{9/2} n^2 \operatorname {PolyLog}\left (2,-1+\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{3 d^{9/2}} \]

output
-4/3*a*b*e^4*n*x^(1/3)/d^4+568/315*b^2*e^4*n^2*x^(1/3)/d^4-32/105*b^2*e^3* 
n^2*x/d^3+8/105*b^2*e^2*n^2*x^(5/3)/d^2-1408/315*b^2*e^(9/2)*n^2*arctan(x^ 
(1/3)*d^(1/2)/e^(1/2))/d^(9/2)-4/3*I*b^2*e^(9/2)*n^2*arctan(x^(1/3)*d^(1/2 
)/e^(1/2))^2/d^(9/2)-4/3*b^2*e^4*n*x^(1/3)*ln(c*(d+e/x^(2/3))^n)/d^4+4/9*b 
*e^3*n*x*(a+b*ln(c*(d+e/x^(2/3))^n))/d^3-4/15*b*e^2*n*x^(5/3)*(a+b*ln(c*(d 
+e/x^(2/3))^n))/d^2+4/21*b*e*n*x^(7/3)*(a+b*ln(c*(d+e/x^(2/3))^n))/d+4/3*b 
*e^(9/2)*n*arctan(x^(1/3)*d^(1/2)/e^(1/2))*(a+b*ln(c*(d+e/x^(2/3))^n))/d^( 
9/2)+1/3*x^3*(a+b*ln(c*(d+e/x^(2/3))^n))^2+8/3*b^2*e^(9/2)*n^2*arctan(x^(1 
/3)*d^(1/2)/e^(1/2))*ln(2-2*e^(1/2)/(-I*x^(1/3)*d^(1/2)+e^(1/2)))/d^(9/2)- 
4/3*I*b^2*e^(9/2)*n^2*polylog(2,-1+2*e^(1/2)/(-I*x^(1/3)*d^(1/2)+e^(1/2))) 
/d^(9/2)
 
3.6.21.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.43 (sec) , antiderivative size = 735, normalized size of antiderivative = 1.50 \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\frac {1}{3} \left (x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2-4 b e n \left (\frac {a e^3 \sqrt [3]{x}}{d^4}-\frac {2 b e^{7/2} n \arctan \left (\frac {\sqrt {e}}{\sqrt {d} \sqrt [3]{x}}\right )}{d^{9/2}}-\frac {2 b e n x^{5/3} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},-\frac {e}{d x^{2/3}}\right )}{35 d^2}+\frac {2 b e^2 n x \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\frac {e}{d x^{2/3}}\right )}{15 d^3}-\frac {2 b e^3 n \sqrt [3]{x} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},-\frac {e}{d x^{2/3}}\right )}{3 d^4}+\frac {b e^3 \sqrt [3]{x} \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{d^4}-\frac {e^2 x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{3 d^3}+\frac {e x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{5 d^2}-\frac {x^{7/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{7 d}+\frac {e^{7/2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (\sqrt {e}-\sqrt {-d} \sqrt [3]{x}\right )}{2 (-d)^{9/2}}-\frac {e^{7/2} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) \log \left (\sqrt {e}+\sqrt {-d} \sqrt [3]{x}\right )}{2 (-d)^{9/2}}-\frac {b e^{7/2} n \left (\log \left (\sqrt {e}-\sqrt {-d} \sqrt [3]{x}\right ) \left (\log \left (\sqrt {e}-\sqrt {-d} \sqrt [3]{x}\right )+2 \log \left (\frac {1}{2} \left (1+\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )\right )-4 \log \left (\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )\right )-4 \operatorname {PolyLog}\left (2,1-\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {\sqrt {-d} \sqrt [3]{x}}{2 \sqrt {e}}\right )\right )}{4 (-d)^{9/2}}+\frac {b e^{7/2} n \left (\log \left (\sqrt {e}+\sqrt {-d} \sqrt [3]{x}\right ) \left (\log \left (\sqrt {e}+\sqrt {-d} \sqrt [3]{x}\right )+2 \log \left (\frac {1}{2}-\frac {\sqrt {-d} \sqrt [3]{x}}{2 \sqrt {e}}\right )-4 \log \left (-\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {1}{2} \left (1+\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )\right )-4 \operatorname {PolyLog}\left (2,1+\frac {\sqrt {-d} \sqrt [3]{x}}{\sqrt {e}}\right )\right )}{4 (-d)^{9/2}}\right )\right ) \]

input
Integrate[x^2*(a + b*Log[c*(d + e/x^(2/3))^n])^2,x]
 
output
(x^3*(a + b*Log[c*(d + e/x^(2/3))^n])^2 - 4*b*e*n*((a*e^3*x^(1/3))/d^4 - ( 
2*b*e^(7/2)*n*ArcTan[Sqrt[e]/(Sqrt[d]*x^(1/3))])/d^(9/2) - (2*b*e*n*x^(5/3 
)*Hypergeometric2F1[-5/2, 1, -3/2, -(e/(d*x^(2/3)))])/(35*d^2) + (2*b*e^2* 
n*x*Hypergeometric2F1[-3/2, 1, -1/2, -(e/(d*x^(2/3)))])/(15*d^3) - (2*b*e^ 
3*n*x^(1/3)*Hypergeometric2F1[-1/2, 1, 1/2, -(e/(d*x^(2/3)))])/(3*d^4) + ( 
b*e^3*x^(1/3)*Log[c*(d + e/x^(2/3))^n])/d^4 - (e^2*x*(a + b*Log[c*(d + e/x 
^(2/3))^n]))/(3*d^3) + (e*x^(5/3)*(a + b*Log[c*(d + e/x^(2/3))^n]))/(5*d^2 
) - (x^(7/3)*(a + b*Log[c*(d + e/x^(2/3))^n]))/(7*d) + (e^(7/2)*(a + b*Log 
[c*(d + e/x^(2/3))^n])*Log[Sqrt[e] - Sqrt[-d]*x^(1/3)])/(2*(-d)^(9/2)) - ( 
e^(7/2)*(a + b*Log[c*(d + e/x^(2/3))^n])*Log[Sqrt[e] + Sqrt[-d]*x^(1/3)])/ 
(2*(-d)^(9/2)) - (b*e^(7/2)*n*(Log[Sqrt[e] - Sqrt[-d]*x^(1/3)]*(Log[Sqrt[e 
] - Sqrt[-d]*x^(1/3)] + 2*Log[(1 + (Sqrt[-d]*x^(1/3))/Sqrt[e])/2] - 4*Log[ 
(Sqrt[-d]*x^(1/3))/Sqrt[e]]) - 4*PolyLog[2, 1 - (Sqrt[-d]*x^(1/3))/Sqrt[e] 
] + 2*PolyLog[2, 1/2 - (Sqrt[-d]*x^(1/3))/(2*Sqrt[e])]))/(4*(-d)^(9/2)) + 
(b*e^(7/2)*n*(Log[Sqrt[e] + Sqrt[-d]*x^(1/3)]*(Log[Sqrt[e] + Sqrt[-d]*x^(1 
/3)] + 2*Log[1/2 - (Sqrt[-d]*x^(1/3))/(2*Sqrt[e])] - 4*Log[-((Sqrt[-d]*x^( 
1/3))/Sqrt[e])]) + 2*PolyLog[2, (1 + (Sqrt[-d]*x^(1/3))/Sqrt[e])/2] - 4*Po 
lyLog[2, 1 + (Sqrt[-d]*x^(1/3))/Sqrt[e]]))/(4*(-d)^(9/2))))/3
 
3.6.21.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 441, normalized size of antiderivative = 0.90, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {2908, 2907, 2005, 2926, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx\)

\(\Big \downarrow \) 2908

\(\displaystyle 3 \int x^{8/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2d\sqrt [3]{x}\)

\(\Big \downarrow \) 2907

\(\displaystyle 3 \left (\frac {4}{9} b e n \int \frac {x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{d+\frac {e}{x^{2/3}}}d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2\right )\)

\(\Big \downarrow \) 2005

\(\displaystyle 3 \left (\frac {4}{9} b e n \int \frac {x^{8/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{x^{2/3} d+e}d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2\right )\)

\(\Big \downarrow \) 2926

\(\displaystyle 3 \left (\frac {4}{9} b e n \int \left (\frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) e^4}{d^4 \left (x^{2/3} d+e\right )}-\frac {\left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) e^3}{d^4}+\frac {x^{2/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) e^2}{d^3}-\frac {x^{4/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right ) e}{d^2}+\frac {x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{d}\right )d\sqrt [3]{x}+\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle 3 \left (\frac {1}{9} x^3 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2+\frac {4}{9} b e n \left (\frac {e^{7/2} \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{d^{9/2}}+\frac {e^2 x \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{3 d^3}-\frac {e x^{5/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{5 d^2}+\frac {x^{7/3} \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )}{7 d}-\frac {a e^3 \sqrt [3]{x}}{d^4}-\frac {i b e^{7/2} n \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )^2}{d^{9/2}}-\frac {352 b e^{7/2} n \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right )}{105 d^{9/2}}+\frac {2 b e^{7/2} n \arctan \left (\frac {\sqrt {d} \sqrt [3]{x}}{\sqrt {e}}\right ) \log \left (2-\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}\right )}{d^{9/2}}-\frac {b e^3 \sqrt [3]{x} \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )}{d^4}-\frac {i b e^{7/2} n \operatorname {PolyLog}\left (2,\frac {2 \sqrt {e}}{\sqrt {e}-i \sqrt {d} \sqrt [3]{x}}-1\right )}{d^{9/2}}+\frac {142 b e^3 n \sqrt [3]{x}}{105 d^4}-\frac {8 b e^2 n x}{35 d^3}+\frac {2 b e n x^{5/3}}{35 d^2}\right )\right )\)

input
Int[x^2*(a + b*Log[c*(d + e/x^(2/3))^n])^2,x]
 
output
3*((x^3*(a + b*Log[c*(d + e/x^(2/3))^n])^2)/9 + (4*b*e*n*(-((a*e^3*x^(1/3) 
)/d^4) + (142*b*e^3*n*x^(1/3))/(105*d^4) - (8*b*e^2*n*x)/(35*d^3) + (2*b*e 
*n*x^(5/3))/(35*d^2) - (352*b*e^(7/2)*n*ArcTan[(Sqrt[d]*x^(1/3))/Sqrt[e]]) 
/(105*d^(9/2)) - (I*b*e^(7/2)*n*ArcTan[(Sqrt[d]*x^(1/3))/Sqrt[e]]^2)/d^(9/ 
2) + (2*b*e^(7/2)*n*ArcTan[(Sqrt[d]*x^(1/3))/Sqrt[e]]*Log[2 - (2*Sqrt[e])/ 
(Sqrt[e] - I*Sqrt[d]*x^(1/3))])/d^(9/2) - (b*e^3*x^(1/3)*Log[c*(d + e/x^(2 
/3))^n])/d^4 + (e^2*x*(a + b*Log[c*(d + e/x^(2/3))^n]))/(3*d^3) - (e*x^(5/ 
3)*(a + b*Log[c*(d + e/x^(2/3))^n]))/(5*d^2) + (x^(7/3)*(a + b*Log[c*(d + 
e/x^(2/3))^n]))/(7*d) + (e^(7/2)*ArcTan[(Sqrt[d]*x^(1/3))/Sqrt[e]]*(a + b* 
Log[c*(d + e/x^(2/3))^n]))/d^(9/2) - (I*b*e^(7/2)*n*PolyLog[2, -1 + (2*Sqr 
t[e])/(Sqrt[e] - I*Sqrt[d]*x^(1/3))])/d^(9/2)))/9)
 

3.6.21.3.1 Defintions of rubi rules used

rule 2005
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m 
+ n*p)*(b + a/x^n)^p*Fx, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && Neg 
Q[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2907
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*((f_.)*( 
x_))^(m_.), x_Symbol] :> Simp[(f*x)^(m + 1)*((a + b*Log[c*(d + e*x^n)^p])^q 
/(f*(m + 1))), x] - Simp[b*e*n*p*(q/(f^n*(m + 1)))   Int[(f*x)^(m + n)*((a 
+ b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, p}, x] && IGtQ[q, 1] && IntegerQ[n] && NeQ[m, -1]
 

rule 2908
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*(x_)^(m_ 
.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k   Subst[Int[x^(k*(m + 1) 
 - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)], x]] /; FreeQ[{a, 
 b, c, d, e, m, p, q}, x] && FractionQ[n]
 

rule 2926
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[(a + b 
*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c, d, e 
, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] & 
& IntegerQ[s]
 
3.6.21.4 Maple [F]

\[\int x^{2} {\left (a +b \ln \left (c \left (d +\frac {e}{x^{\frac {2}{3}}}\right )^{n}\right )\right )}^{2}d x\]

input
int(x^2*(a+b*ln(c*(d+e/x^(2/3))^n))^2,x)
 
output
int(x^2*(a+b*ln(c*(d+e/x^(2/3))^n))^2,x)
 
3.6.21.5 Fricas [F]

\[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\int { {\left (b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a\right )}^{2} x^{2} \,d x } \]

input
integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^2,x, algorithm="fricas")
 
output
integral(b^2*x^2*log(c*((d*x + e*x^(1/3))/x)^n)^2 + 2*a*b*x^2*log(c*((d*x 
+ e*x^(1/3))/x)^n) + a^2*x^2, x)
 
3.6.21.6 Sympy [F(-1)]

Timed out. \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\text {Timed out} \]

input
integrate(x**2*(a+b*ln(c*(d+e/x**(2/3))**n))**2,x)
 
output
Timed out
 
3.6.21.7 Maxima [F(-2)]

Exception generated. \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.21.8 Giac [F]

\[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\int { {\left (b \log \left (c {\left (d + \frac {e}{x^{\frac {2}{3}}}\right )}^{n}\right ) + a\right )}^{2} x^{2} \,d x } \]

input
integrate(x^2*(a+b*log(c*(d+e/x^(2/3))^n))^2,x, algorithm="giac")
 
output
integrate((b*log(c*(d + e/x^(2/3))^n) + a)^2*x^2, x)
 
3.6.21.9 Mupad [F(-1)]

Timed out. \[ \int x^2 \left (a+b \log \left (c \left (d+\frac {e}{x^{2/3}}\right )^n\right )\right )^2 \, dx=\int x^2\,{\left (a+b\,\ln \left (c\,{\left (d+\frac {e}{x^{2/3}}\right )}^n\right )\right )}^2 \,d x \]

input
int(x^2*(a + b*log(c*(d + e/x^(2/3))^n))^2,x)
 
output
int(x^2*(a + b*log(c*(d + e/x^(2/3))^n))^2, x)